

Future réglementation «E+C-»

8 juillet 2019

Mairie du 2ème arr. de Paris,

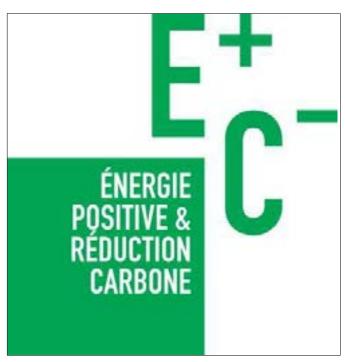
Bernard SESOLIS

Préparation de la RE 2020...

De l'énergie au carbone Schéma- cadre et expérimentation

Traduire dans les faits la loi « TECV » → Préparer la future réglementation par une expérimentation

- une future réglementation renforcée par deux indicateurs supplémentaires:
- → Bilan BEPOS
- Emissions de gaz à effet de serre


- une préparation des acteurs nécessaire
- → Définition d'un socle « Energie Carbone » par le ministère
- → Expérimentation d'un référentiel « Energie Carbone » pour évaluer la faisabilité technique et économique des exigences nouvelles sous l'égide du label « E+C- » lancé le 17/11/2016
- → Soutenir la dynamique et les initiatives privées qui permettent de valoriser l'innovation (quartier, recyclage, stockage carbone, indicateurs environnementaux, effacement via gestion active, ...)

Expérimenter pour co-construire la réglementation

Référentiel « énergie - carbone »

Label

Observatoire

Evaluer sur une même base

Valoriser les projets pilotes

Capitaliser et accompagner les acteurs

www.batiment-energiecarbone.fr/experimentation/fonctionnement

un niveau Energie (indicateur « bilan BEPOS »): de 1 à 4 un niveau Carbone (indicateur « Carbone ») : 1 ou 2

pour tenir compte des typologies de bâtiments, de la localisation et des coûts induits

Possibilité de choisir le couple d'indicateurs adaptés au projet pour expérimenter et obtenir le label.

Label remis suite à la délivrance d'une attestation par un des 5 organismes conventionnés par l'Etat :

- Céquami,
- Cerqual,
- Certivéa,
- Prestaterre,
- Promotelec Services

L'énergie dans le référentiel

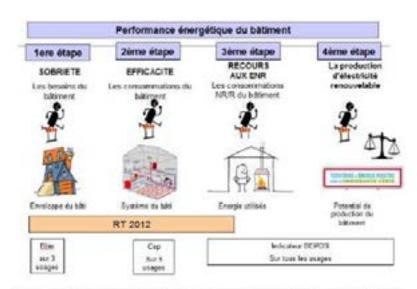


Figure 1 – schéma d'ensemble d'amélioration de la performance énergétique d'un bâtiment et indicateurs associés

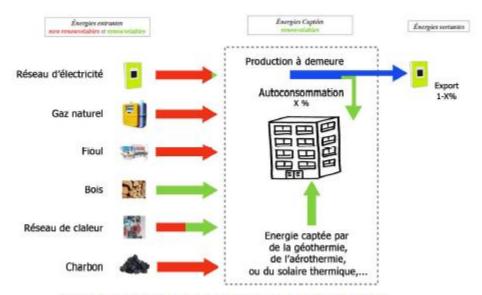


Figure 2 - Schéma du périmètre d'évaluation du bilan énergétique

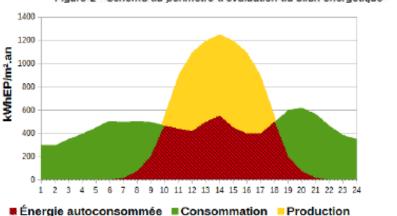


Figure 3 - Exemple d'évolution de la consommation et de la production d'énergie au cours d'une journée

Energie RT2012 ≠ Energie E+C-

Cep RT 2012 et bilan BEPOS différents : distinction des parts EnR et non EnR et prise en compte de tous les usages dans le BEPOS

Coefficients de conversion	RT 2012 Coefficients de conversion en énergie primaire	Bilan BEPOS Coefficients de conversion en énergie primaire non renouvelable
Bois	1	0
RCU	1	1 – taux Enr
Production électrique	2,58 (on déduit toute la production locale peu importe son caractère d'origine renouvelable ou non)	Dépend du caractère non renouvelable de la source d'énergie Se distingue entre ce qui est utile au bâtiment (autoconsommable) et la part exportée

Consommations usages mobiliers (Aueres)

kWh e finale/m².an	
Maison individuelle	29
Logement collectif	27
Bureaux	26
Accueil petite enfance	6
Enseignement primaire	3
Enseignement secondaire (partie jour)	8
Enseignement secondaire (partie nuit)	0
Université	9
Foyer jeunes travailleurs	10
Hôtel 0*,1* (partie nuit)	9
Hôtel 2* (partie nuit)	7
Hôtel 3* (partie nuit)	12
Hôtel 4*,5* (partie nuit)	12
Hôtel 0*,1* et 2* (partie jour	31
Hôtel 3*,4* et 5* (partie jour	19

kWh e finale/m².an	
Toutes restaurations	0
Tous établissements sportifs	0
Etablissement sanitaire avec hébergement	17
Hôpital (partie nuit)	17
Hôpital (partie jour)	11
Industrie 3*8h	14
Industrie 8h à 18h	7
Tribunal	27
Transport-aérogare	0
Commerces	90

Aue_{ref} = consommations ascenseurs + consommations parkings + consommations parties communes + consommations usages mobiliers

X 2,58 pour obtenir des kWhep/m².an

Ne pas comparer RT 2012 et bilan Bepos Exemple


kWhep/m².an	Bâtiment chauffage et ECS 100% bois	Bâtiment chauffage et ECS Gaz
Chauffage RT2012	20	20
Chauffage Bepos	0	20
ECS RT2012	25	25
ECS Bepos	0	25
Eclairage	5 5	5 5
Ventilation	3	3
Auxiliaires	2 2	2 2
Autres usages électriques	- 75	- 75
Cep RT 2012	55	55
Bilan Bepos	85	130

Les 4 niveaux d'exigence « énergie » du label E+C-

- « Energie 1 », « Energie 2 » → avancée par rapport à la RT 2012 → amélioration des performances du bâtiment à coût maîtrisé → efficacité énergétique ou bien, chaleur ou électricité renouvelables.
- « Energie 3 » → effort supplémentaire par rapport aux précédents niveaux → renforcements de l'efficacité énergétique du bâti et des systèmes et un recours significatifs aux énergies renouvelables thermiques ou électriques.
- « Energie 4 » → atteinte de l'équilibre entre consommations non renouvelables et production d'électricité renouvelable injectée sur le réseau

	Maia an individualla	language la collectif	B	Autres bâtiments
	Maison individuelle	Immeuble collectif	Bureaux	soumis à la RT 2012
E1	Cmax 2012 * 0.95 + AUref	"55" + AUref (55 = ~Cmax2012* 0.95)	Cmax 2012 * 0,85 + AUref	Cmax 2012 * 0,9 + AUref
E2	Cmax 2012 * 0,9 + AUref	"50" + AUref (50 ~Cmax2012* 0.85)	Cmax 2012 * 0,7 + AUref	Cmax 2012 * 0,8 + AUref
E 3	Cmax 2012* 0,8 + Auref - 20	"50" * 0,8 + Auref - 20	Cmax2012 * 0,6 + Auref - 40	Cmax2012* 0,8 + Auref - 20
E4	0	0	0	0

Valeurs pivots des bilans « Bepos » selon les 4 niveaux en logements

Le carbone dans le référentiel

Objectifs

1. Réduire les émissions de gaz à effet de serre tout au long du cycle de vie dans les bâtiments

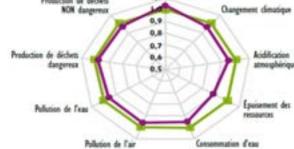
réduction de 50% des émissions de GES d'ici 2030 réduction de 87% des émissions de GES d'ici 2050

2. Evaluer l'empreinte carbone dès la construction d'un bâtiment

Etudier la réduction des émissions de GES d'un bâtiment, de sa construction à sa démolition → le référentiel permet d'évaluer l'impact carbone global du bâtiment et un indicateur spécifique évalue l'impact carbone des produits et des équipements.

3. Valoriser les matériaux recyclables et l'économie circulaire

Prise en considération de l'impact environnemental complet → prises en compte du réemploi et de la valorisation des matériaux issus de la déconstruction→ soutien et développement de la filière de recyclabilité des matériaux.



2 niveaux d'exigence « carbone »

Evaluation sur le principe de l'Analyse de Cycle de Vie (ACV) selon une méthode simplifiée ou détaillée > 14 à 26 indicateurs environnementaux sont déterminés pour chacune des phases du cycle de vie du bâtiment :

- production
- construction
- exploitation (pour une durée de 50 ans)
- fin de vie.

Les exigences portent uniquement sur l'indicateur Gaz à Effet de Serre mais tous les indicateurs sont calculés et capitalisés.

Deux types d'émissions de gaz à effet de serre permettent de déterminer l'indicateur Carbone :

- CO2eq/m² émis sur l'ensemble du cycle de vie du bâtiment : Eges
- CO2eq/m² émis relatifs aux produits de construction et équipements : EgesPCE

L'atteinte des niveaux « Carbone 1 » et « Carbone 2 » est déterminée par la comparaison de ces deux types d'émissions avec des niveaux d'émission de gaz à effet de serre maximal Egesmax et Eges PCE max.

ACV

2 approches

- méthode simplifiée permettant de calculer les indicateurs :
- émissions de GES
- utilisation de l'énergie
- utilisation de l'eau
- production des déchets
- méthode **détaillée** permet de calculer tous les indicateurs (norme NF EN 15978)

4 contributeurs pris en compte

- Produits de construction et équipements (composants du bâtiments et de sa parcelle)
- Consommation d'énergie (Tous les usages de l'énergie dans le bâtiment)
- Consommation et rejet d'eau (Tous les usages de l'eau à l'échelle du bâtiment et de sa parcelle)
- Chantier (Consommation d'énergie du chantier, les consommations et rejets d'eau du chantier, l'évacuation et le traitement des déchets du terrassement)

Phase de production Phase de Construction Phase de lin de vie Construction de construction et équiperments

Consamunation d'énergie

Chantier

Consamunation d'ean

Les indicateurs environnementaux des normes EN 15804 / EN 15978

Impacts environnementaux

Categorie d'impact	Paramètre	Unité (exprimée par unité fonctionnelle ou par unité déclarée)	
Réchauffement climatique	Potentiel de réchauffement global, GWP	kg de CO ₂ équiv.	
Appauvrissement de la couche d'ozone	Potentiel de destruction de la couche d'ozone stratosphérique, ODP	kg de CFC 11 équiv.	
Acidification des sols et de l'eau	Potentiel d'acidification des soits et de l'eau, AP	kg de SO ₂ équiv.	
Eutrophisation	Potentiel d'eutrophisation, EP	kg de (PO ₄) ³ - equiv.	
Formation d'ozone photochimique	Potentiel de formation d'ozone troposphérique, POCP	kg d'éthène équiv.	
Épuisement des ressources ablotiques — éléments	Potentiel d'épuisement (ADP-éléments) pour les ressources ablotiques non fossiles ⁶³	kg de Sti équiv.	
Épulsement des ressources abiotiques — combustibles fossiles	Potentiel d'épuisement (ADP-combustibles tossiles) pour les ressources ablotiques tossiles ^(t)	MJ, pouvoir calorifique intérieur	

- a) Le potentiel d'épuisement ablotique est calculé et déclaré par deux indicateurs différents.
 - ADP-éléments: inclut toutes les ressources de matières abiotiques non renouvelables (c'est-à-dire à l'exceptio des ressources fossilies);
 - ADP-combustibles fossiles: incluf toutes les ressources fossiles.

Catégories de déchets (déchets solides éliminés)

Paramètre	Unité (exprimée par unité fonctionnelle ou par unité déclarée)
Déchets dangereux éliminés	kg
Déchets non dangereux éliminés	kg
Déchets radioactifs éliminés	kg

Utilisation des ressources

Paramètre	Unité (exprimée par unité fonctionnelle ou par unité déclarée)
Utilisation de l'énergie primaire renouvelable, à l'exclusion des ressources d'énergie primaire renouvelables utilisées comme matières premières	MJ, pouvoir calorifique intérieur
Utilisation des ressources d'énergie primaire renouvelables utilisées en tant que matières premières	MJ, pouvoir calorifique interieur
Utilisation totale des ressources d'énergie primaire renouvelables (énergie primaire et ressources d'énergie primaire utilisées comme matières premières)	MJ, pouvoir caloritique intérieur
Utilisation de l'énergie primaire non renouvelable, à l'exclusion des ressources d'énergie primaire non renouvelables utilisées comme matières premières	MJ, pouvoir calorifique inférieur
Utilisation des ressources d'énergie primaire non renouvelables utilisées en tant que matières premières	MJ, pouvoir calorifique intérieur
Utilisation totale des ressources d'énergie primaire non renouvelables (énergie primaire et ressources d'énergie primaire utilisées comme mistères premières)	MJ, pouvoir caloritique intérieur
Utilisation de matière secondaire	kg
Utilisation de combustibles secondaires renouvelables	MJ, pouvoir calorifique intérieur
Utilisation de combustibles secondaires non renouvelables	MJ, pouvoir calorifique intérieur
Utilisation nette d'eau douce	m ³

Flux sortants du système (déchets valorisés et énergie exportée)

Paramètre	Unité (exprimée par unité fonctionnelle ou par unité déclarée)
Composants destinés à la réutilisation	kg
Matériaux destinés au recyclage	kg
Matériaux destinés à la récupération d'énergie	kg
Énergie fournie à l'extérieur	MJ par vecteur énergétique

FDES et PEP : données nécessaires pour les acv

FDES → Fiche de Déclaration Environnementale et Sanitaire, PEP → profil environnemental d'un produit, = résultats de l'analyse de cycle de vie d'un produit : comptabilisation de l'ensemble des flux depuis l'extraction des matières premières ayant servi à le fabriquer, jusqu'à la fin de vie.

Le bilan est restitué sur un ensemble d'indicateurs environnementaux à l'issue d'une étude détaillée selon un référentiel commun.

Réalisation des FDES et PEP selon les normes européennes NF EN 15804 + A1 (vérifiée par un tiers à partir du 1^{er} juillet 2017)

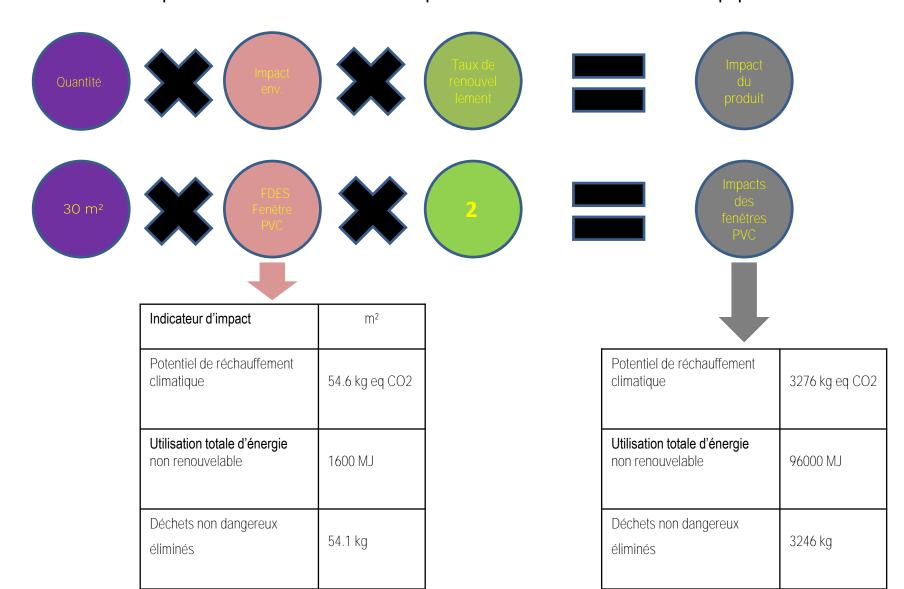
Exemples de bases de données disponibles.

www.base-inies.fr

www.energie.wallonie.be/fr/ les-guides-pratiques

www.bre.co.uk

Différents niveaux d'hypothèses pour les contributeurs PCE


Méthode simplifiée	Valeurs forfaitaires	/ lot	Les éléments sont renseignés à travers des ratios établis au niveau des lots
	FDES/PEP spécifiques	Collectives	FDES/PEP réalisés par une organisation professionnelle pour une famille de produit (ex : laine de verre de résistance thermique R=XX)
Méthode détaillée		Individuelles	Propre à un produit en particulier (ex : laine de verre de marque X et de modèle Y)
	Valeurs par défaut données environnementales	•	Les informations sont issues de FDES établies par le CSTB

Les configurateurs filières

Configurateur	Fonctions	Lien	État d'avancement
BETE Details Environmentalist	Outil permettant l'évaluation des impacts environnementaux des bétons prêt à l'emploi	http://www.snbpe.org/inde x.php/developpement_dur able/calculette	opérationnel
SAVE SOLUTIONS AGIER VALEURS DEVIRONNEHENTALES	Configurateur dédié aux produits et systèmes de construction en acier	https://www.save- construction.com/	opérationnel
DEbois	Configurateur dédié aux produits de construction à base de bois	http://www.de-bois.fr/	Phase de vérification
nvironnement	Configurateur pour les éléments préfabriqués en béton		projet
PEPIN BIO	Outil permettant aux acteurs des matériaux biosourcés de produire leurs FDES	http://www.karibati.fr	projet

Principe de calcul des impacts environnementaux

Calcul des impacts environnementaux d'un produit de construction ou d'un équipement

Des outils disponibles pour l'analyse de cycle de vie (ACV)

www.izuba.fr/logiciel/equer

Cycleco, Région Bourgogne http://www.e-licco.cycleco.eu

https://team-building.pwc.fr

http://www.eosphere.fr/COCON-comparaison-solutions-constructives-confort.html

Les 2 seuils Carbone : calcul des Egesmax

 A_I et A_{PCE,I}, exprimés en kg eq. CO₂/m²_{SDP}, sont les valeurs pivots définies dans le tableau cidessous :

En kg eq. CO ₂ /m³ _{SDP}	Niveau de performance visé	Maisons individuelles ou accolées	Bätiments collectifs d'habitation	Bätiments à usage de bureau	Autres bătiments soumis à la réglementation thermique
A_{i}	Carbone 1	1350	1550	1500	1625
A_2	Carbone 2	800	1000	980	850
$A_{PCE,1}$	Carbone 1	700	800	1050	1050
$A_{PCE,2}$	Carbone 2	650	750	900	750

m_i, la modulation (kg eq.CO₂/m²_{SDP}) liée à la consommation énergétique suivant la zone climatique, l'altitude et la surface des logements. Sa valeur est fournie par la formule suivante:

$$m_i = \alpha_i \times \left[M_{\text{gctype}} \times (M_{\text{gcgéo}} + M_{\text{gcalt}} + M_{\text{gcsurf}}) - 1 \right]$$

Avec:

 α_i, dépend du type de bâtiment et du niveau de performance ciblé. Sa valeur (kg eq.CO₂/m²_{SOP}) est donnée ci-après :

Niveau de performance visé	Maisons individuelles ou accolées	Bâtiments collectifs d'habitation	Bâtiments à usage de bureau	Autres bătiments soumis à la réglementation thermique
Carbone 1	550	600	300	525
Carbone 2	100	250	130	100

- Mgtype, dépend du type de bâtiment et du niveau de performance ciblé (Cf ANNEXE des Niveaux de performance du référentiel Energie Carbone)
- M_{cgéo}, dépend de la zone géographique, type de bâtiment et du niveau de performance ciblé (Cf ANNEXE des Niveaux de performance du référentiel Energie Carbone)
- M_{calt}, dépend de l'altitude du bâtiment, du type de bâtiment et du niveau de performance ciblé (Cf ANNEXE des Niveaux de performance du référentiel Energie Carbone)
- Mpark, modulation, exprimée en kg eq. CO₂/m²_{SDP}, relative aux places de parking imposées par les contraintes d'urbanisme et effectivement réalisées, selon la formule suivante :

$$M_{park} = \frac{NbPlacesSurface \times 700 + NbPlacesSouterrain \times 3000}{SDP}$$

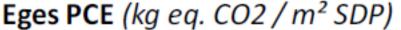
Avec

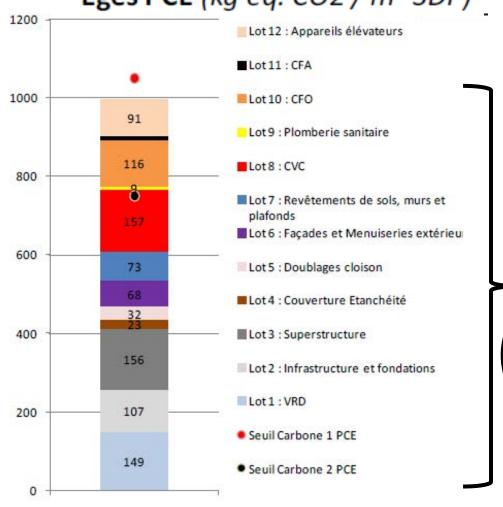
- NbPlacesSurface, le nombre de places de parking en surface,
- NbPlacesSouterrain, le nombre de places de parking en souterrain,
- SDP , la surface de plancher du bâtiment.

Par exemple:

⇒ En maison individuelle, en zone H1a, de 120 m² SDP :

	CARBONE 1	CARBONE 2	
Eges max,	1460	820	
Eges _{PCE,max} ,	700	650	

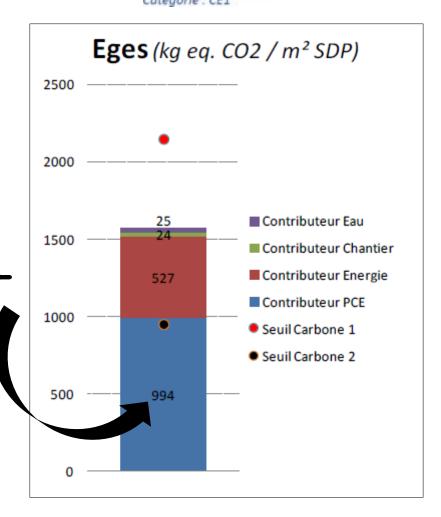

 $Eges_{max,i} = A_i + m_i + M_{park}$


et

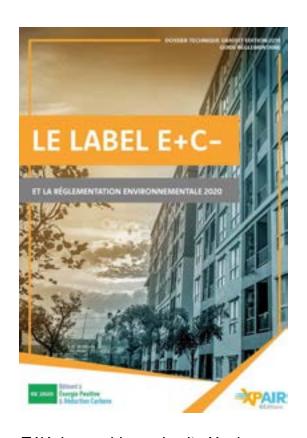
 $Eges_{PCE,max,i} = A_{PCE,i} + M_{park}$

Exemple sur une école primaire

(source: Tribu Energie - 2018)



 $S_{RT} = 3024m^2$ $SU_{RT} = 2705m^2$ $SDP = 2626m^2$ Sans parking


Système constructif : béton + ITE

Système énergétique : Gaz condensation

Zone climatique : H2b Catégorie : CE1

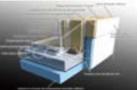
Des documents synthétiques sur E+C-

Téléchargeable sur le site Xpair.com

Mallette de formation sur « l'expérimentation E+C- »

Première réalisation E+C-: maison « Ecolocost »

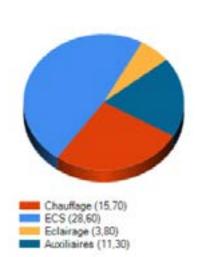
à Ermont (95)


niveau Energie 3 Carbone 1

Shab = 81 m² pour 130 000 €HT

Fondations: Ue = 0,11 W/m².K
 <11 m³ béton coulé en coffrage XPS

Façades U = 0,105 W/m².K
 Ossature bois


• Triple vitrages : Uw = 0,9 W/m².K

• Plancher haut : U = 0,10 W/m².K

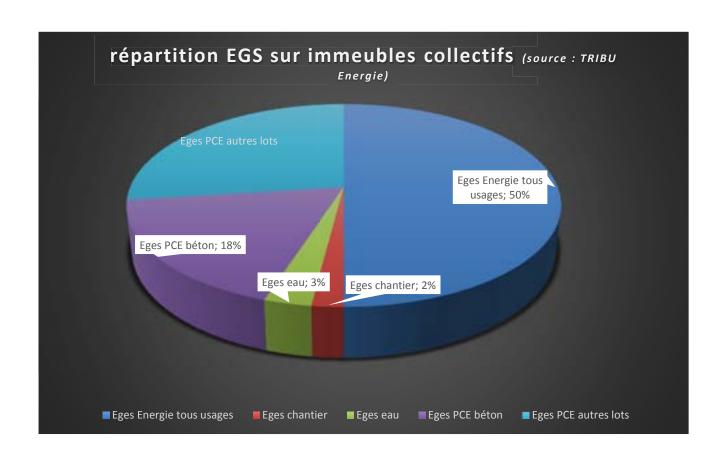
système combiné 4 en 1 NILAN COMPACT P

Source : Agence d'architecture Jérôme BRULLE

Premières tendances en immeubles collectifs

(source: bureau d'études Tribu Energie - 11/2016)

Bilan BEPOS


Energie	Gaz individuel	Gaz collectif+ solaire	Bois	Effet joule + CET	RCU vertueux
Niveau Enveloppe	+	+	•	++	- av taux ENR +
Energie 1 (niv 50)	OUI	OUI	OUI	Nécessite PV 2,7m³/lgt	OUI
Energie 2 (niv 50)	OUI	OUI	OUI	Nécessite PV 3,5m³/lgt	OUI
Energie 3	Nécessite PV 2,3m³/lgt	Nécessite PV 2m²/lgt	OUI	impossible	Selon taux ENR
Energie 4	impossible	impossible	Très difficile	impossible	impossible

^{- :} performances bâti faibles (équivalentes garde-fous par paroi RT 2005, dégradation des pratiques actuelles jusqu'au Bbiomax)

^{+ :} performances bâti élevées (équivalentes Bbiomax -40%)

Premières tendances en immeubles collectifs

(source : bureau d'études Tribu Energie)

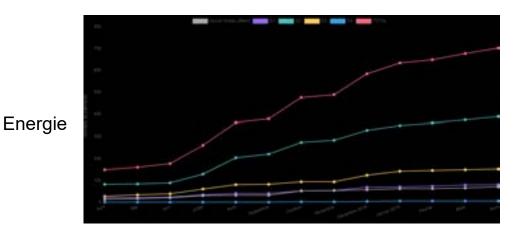
Tableau synthétique des labels BBC, BEPOS et BEPOS+ effinergie 2017

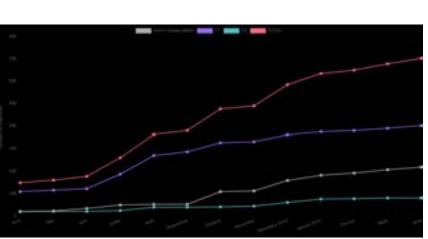
		Maison individuelle	Logement collectif	Tertiaire	
Pré-requis	BBC P	RT 2012 et E+C-, a minima Energie 2 – Carbone 1			
	BEPOS P	RT 2012 et E+C-, a minima Energie 3 – Carbone 1 et bâtiment producteur d'énergie renouvelable			
	BEP⊕S peffinergie	RT 2012 et E+C-, a minima Energie 4 – Carbone 1 et bâtiment producteur d'énergie renouvelable			
	Bbiomax	Bbiomax - 20%	Modulation du Bbiomax	Bbiomax - 20%	
	Cepmax	Cepmax - 20%	Cepmax = 20%1	Cepmax - 40%	
Exigences communes	Perméabilité à l'air du bâti	Q4Pa_surf ≤ 0,4 m3/h/m² Ou formation des ouvriers Ou démarche qualité	Q4Pa_surf ≤ 0,8 m3/h/m² Ou ≤ 1 m3/h/m² sulvant le type de mesure Ou démarche qualité	Q4Pa_surf inférieur à la valeur prise dans l'étude thermique Ou démarche qualité	
	Contrôle des réseaux de ventilation	PROMEVENT Pré-inspection et Vérifications fonctionnelles et Mesures fonctionnelles aux bouches	PROMEVENT Pré-inspection et Vérifications fonctionnelles et Mesures fonctionnelles aux bouches et Mesure d'étanchéité à l'air des réseaux aérauliques ou démarche qualité	Protocole effinergie Contrôle visuel et Vérification mesures fonctionnelles aux bouches et Mesure d'étanchéité à l'air des réseaux aérauliques ou démarche qualité	
	Qualification des bureaux d'étude	Qualifications OPQIBI 1331 et 1332 "Études Thermiques Réglementaires" ou. Certification NF Etudes Thermiques ou. Certification BE NR d'Loert option "Etudes thermiques réglementaires" ou. Référents CERTIVEA.			
	Commissionneme nt	Nécessité de mise en place d'un commissionnement			
	Mobilité	Utilisation de l'outil <u>effinergie écomobilité</u>			
	Information aux usagers	Fourniture du guide effinergie et affichage			

Bilan labels « Effinergie 2017 »

(fin 2018)

Démarrage début 2017.


Secteur résidentiel : 1923 logements en collectifs (30 bâtiments) et 148 maisons → 33% BBC, 1% en Bepos et 1% en Bepos+


Secteurs tertiaires: 630529 m² répartis sur 60 bâtiments → 51 BBC, 8 Bepos, 1 Bepos + (surtout immeubles de bureaux)

Le premier projet certifié en France Bepos+ Effinergie 2017 est le bâtiment LowCal du bureau d'études Enertech (premier label E+C- « E4C2 »)

Observatoire E+C- (05/2019)

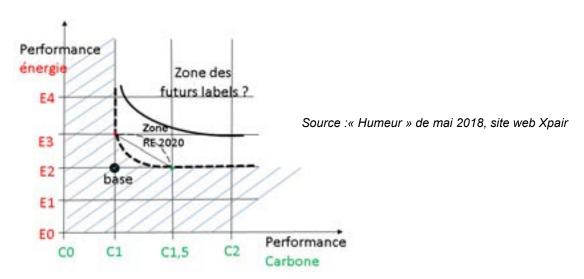
Carbone

Contexte statistique

Opérations	615
Bâtiments	815
Logements	4018
SDP total tertiaire	334 295 m²

Répartition des bâtiments

Bâtiments Tertiaire	122
Bâtiments de logements collectifs	183
Maisons individuelles ou accolées	510


Niveaux Énergie (E) et Carbone (C)

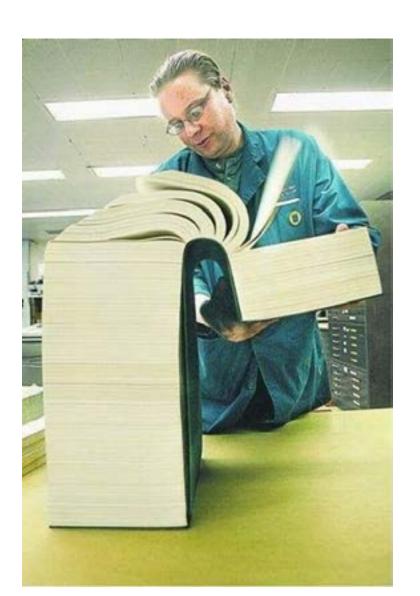
	C ₀	C ₁	C ₂
E ₀	49	43	-
E ₁	41	55	3
E ₂	143	285	32
E ₃	32	78	47
E ₄	5	1	1

Pistes actuelles pour la future RE 2020

A partir des retours de l'expérimentation E+C- →

 Future exigence : une base minimale « E+/C- » avec un effort supplémentaire en E, ou bien en C,...ou peut-être selon des combinaisons E/C

- Prise en compte des autres usages, calculs avec ou sans exigences sur d'autres critères environnementaux (eau, déchets, mobilité,....)
- Calendrier annoncé : Textes prêts fin 2019


Sortie de l'arrêté 1er semestre 2020

Application < fin 2020

Certains acteurs demandent le report de cette échéance

Nécessité pour la future RE 2020

Simplifier!

Merci de votre attention

bernard.sesolis@gmail.com

